All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximating the Signature Quadratic Form Distance Using Scalable Feature Signatures

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10281432" target="_blank" >RIV/00216208:11320/14:10281432 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007%2F978-3-319-04114-8_8" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-04114-8_8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-04114-8_8" target="_blank" >10.1007/978-3-319-04114-8_8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximating the Signature Quadratic Form Distance Using Scalable Feature Signatures

  • Original language description

    The feature signatures in connection with the signature quadratic form distance have become a respected similarity model for effective multimedia retrieval. However, the efficiency of the model is still a challenging task because the signature quadraticform distance has quadratic time complexity according to the number of tuples in feature signatures. In order to reduce the number of tuples in feature signatures, we introduce the scalable feature signatures, a new formal framework based on hierarchicalclustering enabling definition of various feature signature reduction techniques. As an example, we use the framework to define a new feature signature reduction technique based on joining of the tuples. We experimentally demonstrate our new feature signature reduction technique can be used to implement more efficient yet effective filter distances approximating the original signature quadratic form distance. We also show the filter distances using our new feature signature reduction te

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GPP202%2F12%2FP297" target="_blank" >GPP202/12/P297: Synergistic Modeling of Adaptive Similarities for Multimedia Retrieval</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    MultiMedia Modeling (Lecture Notes in Computer Science)

  • ISBN

    978-3-319-04113-1

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    86-97

  • Publisher name

    Springer International Publishing

  • Place of publication

    Berlin

  • Event location

    Dublin, Ireland

  • Event date

    Jan 6, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article