All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximating adaptive distance measures using scalable feature signatures

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10313495" target="_blank" >RIV/00216208:11320/15:10313495 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s11042-014-2251-4" target="_blank" >http://dx.doi.org/10.1007/s11042-014-2251-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11042-014-2251-4" target="_blank" >10.1007/s11042-014-2251-4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximating adaptive distance measures using scalable feature signatures

  • Original language description

    The feature signatures in connection with the adaptive distance measures have become a respected similarity model for effective multimedia retrieval. However, the efficiency of the model is still a challenging task because the adaptive distance measureshave at least quadratic time complexity according to the number of tuples in feature signatures. In order to reduce the number of tuples in feature signatures, we introduce the scalable feature signatures, a new formal framework enabling definition of new methods based on agglomerative hierarchical clustering. We show the framework can be used to express nontrivial feature signature reduction techniques including also popular agglomerative hierarchical clustering techniques. We experimentally demonstrate our new feature signature reduction techniques can be used to implement order of magnitude faster yet effective filter distances approximating the original adaptive distance measures. We also show the filter distances using our new feat

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GPP202%2F12%2FP297" target="_blank" >GPP202/12/P297: Synergistic Modeling of Adaptive Similarities for Multimedia Retrieval</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Multimedia Tools and Applications

  • ISSN

    1380-7501

  • e-ISSN

  • Volume of the periodical

    2015/74

  • Issue of the periodical within the volume

    December 2015

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    26

  • Pages from-to

    11569-11594

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-84947616854