Approximating adaptive distance measures using scalable feature signatures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10313495" target="_blank" >RIV/00216208:11320/15:10313495 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11042-014-2251-4" target="_blank" >http://dx.doi.org/10.1007/s11042-014-2251-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11042-014-2251-4" target="_blank" >10.1007/s11042-014-2251-4</a>
Alternative languages
Result language
angličtina
Original language name
Approximating adaptive distance measures using scalable feature signatures
Original language description
The feature signatures in connection with the adaptive distance measures have become a respected similarity model for effective multimedia retrieval. However, the efficiency of the model is still a challenging task because the adaptive distance measureshave at least quadratic time complexity according to the number of tuples in feature signatures. In order to reduce the number of tuples in feature signatures, we introduce the scalable feature signatures, a new formal framework enabling definition of new methods based on agglomerative hierarchical clustering. We show the framework can be used to express nontrivial feature signature reduction techniques including also popular agglomerative hierarchical clustering techniques. We experimentally demonstrate our new feature signature reduction techniques can be used to implement order of magnitude faster yet effective filter distances approximating the original adaptive distance measures. We also show the filter distances using our new feat
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GPP202%2F12%2FP297" target="_blank" >GPP202/12/P297: Synergistic Modeling of Adaptive Similarities for Multimedia Retrieval</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Multimedia Tools and Applications
ISSN
1380-7501
e-ISSN
—
Volume of the periodical
2015/74
Issue of the periodical within the volume
December 2015
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
26
Pages from-to
11569-11594
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84947616854