Toward applying agglomerative hierarchical clustering in improving the software development effort estimation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F22%3A63556599" target="_blank" >RIV/70883521:28140/22:63556599 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-031-09070-7_30" target="_blank" >http://dx.doi.org/10.1007/978-3-031-09070-7_30</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-09070-7_30" target="_blank" >10.1007/978-3-031-09070-7_30</a>
Alternative languages
Result language
angličtina
Original language name
Toward applying agglomerative hierarchical clustering in improving the software development effort estimation
Original language description
Background: There are many studies on the effect of data clustering on the effort estimation process. Most of them are on partitioning and density-based clustering, and some use hierarchical clustering but fewer details on the linkage methods. Aim: we concentrate on the aspect of the agglomerative hierarchical clustering algorithm’s effectiveness on the accuracy of the effort estimation. Method: We used the agglomerative hierarchical clustering algorithm to group the data into clusters then performed the IFPUG FPA method for effort estimation. The ISBSG dataset was used in this study. The number of clusters is determined using the dendrogram’s cut points. Different cut points and linkage methods were employed to cluster the dataset for the comparison. The estimated results of these clusters were compared with the result from the whole dataset without clustering. Result: with the selected number of clusters, results are consistently better than without clustering with all selected evaluation criteria. Conclusion: the accuracy of the effort estimation can be significantly improved when using agglomerative hierarchical clustering. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Networks and Systems
ISBN
978-3-031-09069-1
ISSN
2367-3370
e-ISSN
2367-3389
Number of pages
19
Pages from-to
353-371
Publisher name
Springer International Publishing AG
Place of publication
Basel
Event location
on-line
Event date
Apr 26, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000893645700030