All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Toward applying agglomerative hierarchical clustering in improving the software development effort estimation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F22%3A63556599" target="_blank" >RIV/70883521:28140/22:63556599 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-031-09070-7_30" target="_blank" >http://dx.doi.org/10.1007/978-3-031-09070-7_30</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-09070-7_30" target="_blank" >10.1007/978-3-031-09070-7_30</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Toward applying agglomerative hierarchical clustering in improving the software development effort estimation

  • Original language description

    Background: There are many studies on the effect of data clustering on the effort estimation process. Most of them are on partitioning and density-based clustering, and some use hierarchical clustering but fewer details on the linkage methods. Aim: we concentrate on the aspect of the agglomerative hierarchical clustering algorithm’s effectiveness on the accuracy of the effort estimation. Method: We used the agglomerative hierarchical clustering algorithm to group the data into clusters then performed the IFPUG FPA method for effort estimation. The ISBSG dataset was used in this study. The number of clusters is determined using the dendrogram’s cut points. Different cut points and linkage methods were employed to cluster the dataset for the comparison. The estimated results of these clusters were compared with the result from the whole dataset without clustering. Result: with the selected number of clusters, results are consistently better than without clustering with all selected evaluation criteria. Conclusion: the accuracy of the effort estimation can be significantly improved when using agglomerative hierarchical clustering. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Networks and Systems

  • ISBN

    978-3-031-09069-1

  • ISSN

    2367-3370

  • e-ISSN

    2367-3389

  • Number of pages

    19

  • Pages from-to

    353-371

  • Publisher name

    Springer International Publishing AG

  • Place of publication

    Basel

  • Event location

    on-line

  • Event date

    Apr 26, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000893645700030