All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Analyzing the Effectiveness of the Gaussian Mixture Model Clustering Algorithm in Software Enhancement Effort Estimation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F22%3A63556598" target="_blank" >RIV/70883521:28140/22:63556598 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-21967-2_21" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-21967-2_21</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-21967-2_21" target="_blank" >10.1007/978-3-031-21967-2_21</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Analyzing the Effectiveness of the Gaussian Mixture Model Clustering Algorithm in Software Enhancement Effort Estimation

  • Original language description

    Background: The influence of data clustering on the effort estimating process has been studied extensively. Studies focus on partitioning and density-based clustering, and some use hierarchical clustering, but most focus on software development effort estimation. Aim: We focus on the Gaussian Mixture Model algorithm’s effectiveness in the software enhancement effort estimation. Method: We used the Gaussian Mixture Model clustering algorithm to cluster the dataset into clusters and then applied the IFPUG FPA method for effort estimation on these clusters. The ISBSG dataset was used in this study. The number of clusters is determined using the Elbow method with the Distortion score. Besides, the k-means algorithm was also used as the comparative algorithm. The baseline model was determined by using the FPA method on the entire dataset without clustering. Result: With the number of clusters selected as 4, on six evaluation criteria, MAE, MAPE, RMSE, MBRE, and MIBRE, the experimental results show the estimated accuracy using the FPA method on clustered data significantly better when compared with no clustering. Conclusion: the software enhancement effort estimation can be significantly improved when using the Gaussian Mixture Model clustering algorithm

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

  • ISBN

    978-3-031-21966-5

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    255-268

  • Publisher name

    Springer Science and Business Media Deutschland GmbH

  • Place of publication

    Berlín

  • Event location

    Ho Chi Minh City

  • Event date

    Nov 28, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000916496900021