Analyzing the Effectiveness of the Gaussian Mixture Model Clustering Algorithm in Software Enhancement Effort Estimation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F22%3A63556598" target="_blank" >RIV/70883521:28140/22:63556598 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-21967-2_21" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-21967-2_21</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-21967-2_21" target="_blank" >10.1007/978-3-031-21967-2_21</a>
Alternative languages
Result language
angličtina
Original language name
Analyzing the Effectiveness of the Gaussian Mixture Model Clustering Algorithm in Software Enhancement Effort Estimation
Original language description
Background: The influence of data clustering on the effort estimating process has been studied extensively. Studies focus on partitioning and density-based clustering, and some use hierarchical clustering, but most focus on software development effort estimation. Aim: We focus on the Gaussian Mixture Model algorithm’s effectiveness in the software enhancement effort estimation. Method: We used the Gaussian Mixture Model clustering algorithm to cluster the dataset into clusters and then applied the IFPUG FPA method for effort estimation on these clusters. The ISBSG dataset was used in this study. The number of clusters is determined using the Elbow method with the Distortion score. Besides, the k-means algorithm was also used as the comparative algorithm. The baseline model was determined by using the FPA method on the entire dataset without clustering. Result: With the number of clusters selected as 4, on six evaluation criteria, MAE, MAPE, RMSE, MBRE, and MIBRE, the experimental results show the estimated accuracy using the FPA method on clustered data significantly better when compared with no clustering. Conclusion: the software enhancement effort estimation can be significantly improved when using the Gaussian Mixture Model clustering algorithm
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-031-21966-5
ISSN
0302-9743
e-ISSN
—
Number of pages
14
Pages from-to
255-268
Publisher name
Springer Science and Business Media Deutschland GmbH
Place of publication
Berlín
Event location
Ho Chi Minh City
Event date
Nov 28, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000916496900021