All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Fuzzy Paradigmatic Clustering Algorithm

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F19%3A10243412" target="_blank" >RIV/61989100:27510/19:10243412 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/journal/ifac-papersonline/vol/52/issue/13" target="_blank" >https://www.sciencedirect.com/journal/ifac-papersonline/vol/52/issue/13</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ifacol.2019.11.559" target="_blank" >10.1016/j.ifacol.2019.11.559</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Fuzzy Paradigmatic Clustering Algorithm

  • Original language description

    Clustering algorithms resume the datasets into few number of data points such as centroids or medoids, which explain the entire dataset briefly. In the domain of data-driven machine learning, the more precision with the clustering rule leads directly to more precise classification, prediction, and recognition. We propose an efficient clustering method, which applies the paradigms - mainly 3D Gaussian model - to estimate the optimum cluster number, cluster border, and congestion coordinates to model the datasets of the natural distributions. This approach considers both qualitative and quantitative features of the dataset and calculates the best scale to analyze it. We used fuzzy logic to compare the models with data, to generate and rank the hypotheses, and finally to reject or accept the assumptions. The proposed approach which is called Fuzzy Gaussian Paradigmatic Clustering (FGPC) algorithm is used as the basis of a fast (with the complexity order of O(n)) and robust algorithm for identifying fuzzy models.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    50206 - Finance

Result continuities

  • Project

    <a href="/en/project/GA18-15530S" target="_blank" >GA18-15530S: Aplikace vícekriteriálního programování na problémy v pružné výrobě a projektovém plánování: teorie a aplikace</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    IFAC-PapersOnLine. Volume 52, Issue 13

  • ISBN

  • ISSN

    2405-8963

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    2360-2365

  • Publisher name

    Elsevier

  • Place of publication

    Amsterdam

  • Event location

    Berlín

  • Event date

    Aug 28, 2019

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article

    000504282400400