All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Noise Resistant Credibilistic Fuzzy Clustering Algorithm on a Unit Hypersphere with Illustrations Using Expression Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402G4V" target="_blank" >RIV/61988987:17610/23:A2402G4V - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-16203-9_32" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-16203-9_32</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-16203-9_32" target="_blank" >10.1007/978-3-031-16203-9_32</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Noise Resistant Credibilistic Fuzzy Clustering Algorithm on a Unit Hypersphere with Illustrations Using Expression Data

  • Original language description

    This article presents a robust noise-resistant fuzzy-based algorithm for cancer class detection. High-throughput microarray technologies facilitate the generation of large-scale expression data; this data captures enough information to build classifiers to understand the molecular basis of a disease. The proposed approach built on the Credibilistic Fuzzy C-Means (CFCM) algorithm partitions data restricted to a p-dimensional unit hypersphere. CFCM was introduced to address the AQ2 noise sensitiveness of fuzzy-based procedures, but it is unstable and fails to capture local non-linear interactions. The introduced approach addresses these shortcomings. The experimental findings in this article focus on cancer expression datasets. The performance of the proposed approach is assessed with both internal and external measures. The fuzzy-based learning algorithms Fuzzy C-Means (FCM) and Hyperspherical Fuzzy C-Means (HFCM) are used for comparative analysis. The experimental findings indicate that the proposed approach can be used as a plausible tool for clustering cancer expression data.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Lecture Notes in Data Engineering, Computational Intelligence, and Decision Making

  • ISBN

    978-3-031-16202-2

  • Number of pages of the result

    27

  • Pages from-to

    564-590

  • Number of pages of the book

    721

  • Publisher name

    Springer Cham

  • Place of publication

    Switzerland

  • UT code for WoS chapter