All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Computational Complexity of Covering Three-Vertex Multigraphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10282429" target="_blank" >RIV/00216208:11320/14:10282429 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-662-44465-8_42" target="_blank" >http://dx.doi.org/10.1007/978-3-662-44465-8_42</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-662-44465-8_42" target="_blank" >10.1007/978-3-662-44465-8_42</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Computational Complexity of Covering Three-Vertex Multigraphs

  • Original language description

    A covering projection from a graph G to a graph H is a mapping of the vertices of G to the vertices of H such that, for every vertex v of G, the neighborhood of v is mapped bijectively to the neighborhood of its image. Moreover, if G and H are multigraphs, then this local bijection has to preserve multiplicities of the neighbors as well. The notion of covering projection stems from topology, but has found applications in areas such as the theory of local computation and construction of highly symmetricgraphs. It provides a restrictive variant of the constraint satisfaction problem with additional symmetry constraints on the behavior of the homomorphisms of the structures involved. We investigate the computational complexity of the problem of decidingthe existence of a covering projection from an input graph G to a fixed target graph H. Among other partial results this problem has been shown to be NP-hard for simple regular graphs H of valency greater than 2, and a full characterizati

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Mathematical Foundations of Computer Science 2014

  • ISBN

    978-3-662-44464-1

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    493-504

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Budapest

  • Event date

    Aug 25, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article