Computational Complexity of Covering Three-Vertex Multigraphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10282429" target="_blank" >RIV/00216208:11320/14:10282429 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-662-44465-8_42" target="_blank" >http://dx.doi.org/10.1007/978-3-662-44465-8_42</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-662-44465-8_42" target="_blank" >10.1007/978-3-662-44465-8_42</a>
Alternative languages
Result language
angličtina
Original language name
Computational Complexity of Covering Three-Vertex Multigraphs
Original language description
A covering projection from a graph G to a graph H is a mapping of the vertices of G to the vertices of H such that, for every vertex v of G, the neighborhood of v is mapped bijectively to the neighborhood of its image. Moreover, if G and H are multigraphs, then this local bijection has to preserve multiplicities of the neighbors as well. The notion of covering projection stems from topology, but has found applications in areas such as the theory of local computation and construction of highly symmetricgraphs. It provides a restrictive variant of the constraint satisfaction problem with additional symmetry constraints on the behavior of the homomorphisms of the structures involved. We investigate the computational complexity of the problem of decidingthe existence of a covering projection from an input graph G to a fixed target graph H. Among other partial results this problem has been shown to be NP-hard for simple regular graphs H of valency greater than 2, and a full characterizati
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Mathematical Foundations of Computer Science 2014
ISBN
978-3-662-44464-1
ISSN
0302-9743
e-ISSN
—
Number of pages
12
Pages from-to
493-504
Publisher name
Springer
Place of publication
Berlin
Event location
Budapest
Event date
Aug 25, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—