Existence Analysis for a Model Describing Flow of an Incompressible Chemically Reacting Non-Newtonian Fluid
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10282709" target="_blank" >RIV/00216208:11320/14:10282709 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1137/130927589" target="_blank" >http://dx.doi.org/10.1137/130927589</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/130927589" target="_blank" >10.1137/130927589</a>
Alternative languages
Result language
angličtina
Original language name
Existence Analysis for a Model Describing Flow of an Incompressible Chemically Reacting Non-Newtonian Fluid
Original language description
We consider a system of PDEs describing steady motions of an incompressible chemically reacting non-Newtonian fluid. The system of governing equations is composed of the convection diffusion equation for concentration and generalized Navier-Stokes equations where the generalized viscosity depends polynomially on the shear rate (the modulus of the symmetric part of the velocity gradient) and the coupling is due to the dependence of the power-law index on the concentration. This dependence of the power-law index on the solution itself causes the main difficulties in the analysis of the relevant boundary value problem. We generalize the Lipschitz approximation method and show the existence of a weak solution provided that the minimal value of the power-law exponent is bigger than d/2.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LL1202" target="_blank" >LL1202: Implicitly constituted material models: from theory through model reduction to efficient numerical methods</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Mathematical Analysis
ISSN
0036-1410
e-ISSN
—
Volume of the periodical
2014
Issue of the periodical within the volume
46
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
3223-3240
UT code for WoS article
000344746800006
EID of the result in the Scopus database
—