On the Existence of Classical Solution to the Steady Flows of Generalized Newtonian Fluid with Concentration Dependent Power-Law Index
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10401790" target="_blank" >RIV/00216208:11320/19:10401790 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=XilANDt7oZ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=XilANDt7oZ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-019-0415-8" target="_blank" >10.1007/s00021-019-0415-8</a>
Alternative languages
Result language
angličtina
Original language name
On the Existence of Classical Solution to the Steady Flows of Generalized Newtonian Fluid with Concentration Dependent Power-Law Index
Original language description
Steady flows of an incompressible homogeneous chemically reacting fluid are described by a coupled system, consisting of the generalized Navier-Stokes equations and convection-diffusion equation with diffusivity dependent on the concentration and the shear rate. Cauchy stress behaves like power-law fluid with the exponent depending on the concentration. We prove the existence of a classical solution for the two dimensional periodic case whenever the power law exponent is above one and less than infinity.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-03230S" target="_blank" >GA16-03230S: Thermodynamically consistent models for fluid flows: mathematical theory and numerical solution</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
22
Pages from-to
15
UT code for WoS article
000458655800002
EID of the result in the Scopus database
2-s2.0-85061495605