All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Non-Embeddability of Geometric Lattices and Buildings

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10282811" target="_blank" >RIV/00216208:11320/14:10282811 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00454-014-9591-8" target="_blank" >http://dx.doi.org/10.1007/s00454-014-9591-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00454-014-9591-8" target="_blank" >10.1007/s00454-014-9591-8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Non-Embeddability of Geometric Lattices and Buildings

  • Original language description

    A fundamental question for simplicial complexes is to find the lowest dimensional Euclidean space in which they can be embedded. We investigate this question for order complexes of posets. We show that order complexes of thick geometric lattices as wellas several classes of finite buildings, all of which are order complexes, are hard to embed. That means that such -dimensional complexes require -dimensional Euclidean space for an embedding. (This dimension is always sufficient for any -complex.) We develop a method to show non-embeddability for general order complexes of posets.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete and Computational Geometry

  • ISSN

    0179-5376

  • e-ISSN

  • Volume of the periodical

    51

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    23

  • Pages from-to

    779-801

  • UT code for WoS article

    000337141000002

  • EID of the result in the Scopus database