Non-Embeddability of Geometric Lattices and Buildings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10282811" target="_blank" >RIV/00216208:11320/14:10282811 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00454-014-9591-8" target="_blank" >http://dx.doi.org/10.1007/s00454-014-9591-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00454-014-9591-8" target="_blank" >10.1007/s00454-014-9591-8</a>
Alternative languages
Result language
angličtina
Original language name
Non-Embeddability of Geometric Lattices and Buildings
Original language description
A fundamental question for simplicial complexes is to find the lowest dimensional Euclidean space in which they can be embedded. We investigate this question for order complexes of posets. We show that order complexes of thick geometric lattices as wellas several classes of finite buildings, all of which are order complexes, are hard to embed. That means that such -dimensional complexes require -dimensional Euclidean space for an embedding. (This dimension is always sufficient for any -complex.) We develop a method to show non-embeddability for general order complexes of posets.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete and Computational Geometry
ISSN
0179-5376
e-ISSN
—
Volume of the periodical
51
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
779-801
UT code for WoS article
000337141000002
EID of the result in the Scopus database
—