Compactness of higher-order Sobolev embeddings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10318970" target="_blank" >RIV/00216208:11320/15:10318970 - isvavai.cz</a>
Result on the web
<a href="http://mat.uab.es/pubmat/fitxers/download/FileType:pdf/FolderName:v59(2)/FileName:59215_06.pdf" target="_blank" >http://mat.uab.es/pubmat/fitxers/download/FileType:pdf/FolderName:v59(2)/FileName:59215_06.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5565/PUBLMAT_59215_06" target="_blank" >10.5565/PUBLMAT_59215_06</a>
Alternative languages
Result language
angličtina
Original language name
Compactness of higher-order Sobolev embeddings
Original language description
We study higher-order compact Sobolev embeddings on a domain in R^n endowed with a probability measure and satisfying certain isoperimetric inequality. We present a condition on a pair of rearrangement-invariant spaces X and Y which suffices to guaranteea compact embedding of the Sobolev space V^mX into Y. The condition is given in terms of compactness of certain one-dimensional operator depending on the isoperimetric function of the underlying domain. We then apply this result to the characterizationof higher-order compact Sobolev embeddings on concrete measure spaces, including John domains, Maz'ya classes of Euclidean domains and product probability spaces, whose standard example is the Gauss space.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-14743S" target="_blank" >GA13-14743S: Function spaces, weighted inequalities and interpolation II</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Publicacions Matematiques
ISSN
0210-2978
e-ISSN
—
Volume of the periodical
59
Issue of the periodical within the volume
2
Country of publishing house
ES - SPAIN
Number of pages
76
Pages from-to
373-448
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84933527063