Higher-order Sobolev-type embeddings on Carnot-Carathéodory spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10370813" target="_blank" >RIV/00216208:11320/17:10370813 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/mana.201500418" target="_blank" >http://dx.doi.org/10.1002/mana.201500418</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.201500418" target="_blank" >10.1002/mana.201500418</a>
Alternative languages
Result language
angličtina
Original language name
Higher-order Sobolev-type embeddings on Carnot-Carathéodory spaces
Original language description
A sufficient condition for higher-order Sobolev-type embeddings on bounded domains of Carnot-Carathéodory spaces is established for the class of rearrangement-invariant function spaces. The condition takes form of a one-dimensional inequality for suitable integral operators depending on the isoperimetric function relative to the Carnot-Carathéodory structure of the relevant sets. General results are then applied to particular Sobolev spaces built upon Lebesgue, Lorentz and Orlicz spaces on John domains in the Heisenberg group. In the case of the Heisenberg group, the condition is shown to be necessary as well.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
—
Volume of the periodical
290
Issue of the periodical within the volume
7
Country of publishing house
DE - GERMANY
Number of pages
20
Pages from-to
1033-1052
UT code for WoS article
000403091900005
EID of the result in the Scopus database
2-s2.0-84992494522