All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Higher-order Sobolev-type embeddings on Carnot-Carathéodory spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10370813" target="_blank" >RIV/00216208:11320/17:10370813 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1002/mana.201500418" target="_blank" >http://dx.doi.org/10.1002/mana.201500418</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mana.201500418" target="_blank" >10.1002/mana.201500418</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Higher-order Sobolev-type embeddings on Carnot-Carathéodory spaces

  • Original language description

    A sufficient condition for higher-order Sobolev-type embeddings on bounded domains of Carnot-Carathéodory spaces is established for the class of rearrangement-invariant function spaces. The condition takes form of a one-dimensional inequality for suitable integral operators depending on the isoperimetric function relative to the Carnot-Carathéodory structure of the relevant sets. General results are then applied to particular Sobolev spaces built upon Lebesgue, Lorentz and Orlicz spaces on John domains in the Heisenberg group. In the case of the Heisenberg group, the condition is shown to be necessary as well.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Nachrichten

  • ISSN

    0025-584X

  • e-ISSN

  • Volume of the periodical

    290

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    20

  • Pages from-to

    1033-1052

  • UT code for WoS article

    000403091900005

  • EID of the result in the Scopus database

    2-s2.0-84992494522