All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Pointwise Inequalities for Sobolev Functions on Outward Cuspidal Domains

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F22%3A43896260" target="_blank" >RIV/44555601:13440/22:43896260 - isvavai.cz</a>

  • Result on the web

    <a href="https://academic.oup.com/imrn/advance-article-abstract/doi/10.1093/imrn/rnaa279/5999064?redirectedFrom=fulltext" target="_blank" >https://academic.oup.com/imrn/advance-article-abstract/doi/10.1093/imrn/rnaa279/5999064?redirectedFrom=fulltext</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/imrn/rnaa279" target="_blank" >10.1093/imrn/rnaa279</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Pointwise Inequalities for Sobolev Functions on Outward Cuspidal Domains

  • Original language description

    Optimal definitions for Sobolev spaces are crucial in analysis. It was a remarkable discovery of Hajlasz [3] that distributionally defined Sobolev functions can be characterized using pointwise estimates in the context of Sobolev extension domains. This, in part, has played a crucial role in defining Sobolev spaces for general metric measure spaces. Here, we show that for certain cuspidal domains the pointwise characterization holds without any additional assumptions. These domains do not admit extensions for Sobolev functions. Given a domain Rn, we denote by W1,p(), 1 = p = 8, the usual 1st-order Sobolev space consisting of all functions u Lp whose 1st-order.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Mathematics Research Notices

  • ISSN

    1073-7928

  • e-ISSN

    1687-0247

  • Volume of the periodical

    2022

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    12

  • Pages from-to

    3748-3759

  • UT code for WoS article

    000761967500019

  • EID of the result in the Scopus database