Pointwise Inequalities for Sobolev Functions on Outward Cuspidal Domains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F22%3A43896260" target="_blank" >RIV/44555601:13440/22:43896260 - isvavai.cz</a>
Result on the web
<a href="https://academic.oup.com/imrn/advance-article-abstract/doi/10.1093/imrn/rnaa279/5999064?redirectedFrom=fulltext" target="_blank" >https://academic.oup.com/imrn/advance-article-abstract/doi/10.1093/imrn/rnaa279/5999064?redirectedFrom=fulltext</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/imrn/rnaa279" target="_blank" >10.1093/imrn/rnaa279</a>
Alternative languages
Result language
angličtina
Original language name
Pointwise Inequalities for Sobolev Functions on Outward Cuspidal Domains
Original language description
Optimal definitions for Sobolev spaces are crucial in analysis. It was a remarkable discovery of Hajlasz [3] that distributionally defined Sobolev functions can be characterized using pointwise estimates in the context of Sobolev extension domains. This, in part, has played a crucial role in defining Sobolev spaces for general metric measure spaces. Here, we show that for certain cuspidal domains the pointwise characterization holds without any additional assumptions. These domains do not admit extensions for Sobolev functions. Given a domain Rn, we denote by W1,p(), 1 = p = 8, the usual 1st-order Sobolev space consisting of all functions u Lp whose 1st-order.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Mathematics Research Notices
ISSN
1073-7928
e-ISSN
1687-0247
Volume of the periodical
2022
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
3748-3759
UT code for WoS article
000761967500019
EID of the result in the Scopus database
—