3-choosability of planar graphs with ({= 4)-cycles far apart
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10283290" target="_blank" >RIV/00216208:11320/14:10283290 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jctb.2013.10.004" target="_blank" >http://dx.doi.org/10.1016/j.jctb.2013.10.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jctb.2013.10.004" target="_blank" >10.1016/j.jctb.2013.10.004</a>
Alternative languages
Result language
angličtina
Original language name
3-choosability of planar graphs with ({= 4)-cycles far apart
Original language description
A graph is k-choosable if it can be colored whenever every vertex has a list of at least k available colors. We prove that if cycles of length at most four in a planar graph G are pairwise far apart, then G is 3-choosable. This is analogous to the problem of Havel regarding 3-colorability of planar graphs with triangles far apart.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Theory. Series B
ISSN
0095-8956
e-ISSN
—
Volume of the periodical
104
Issue of the periodical within the volume
leden
Country of publishing house
US - UNITED STATES
Number of pages
32
Pages from-to
28-59
UT code for WoS article
000328235500002
EID of the result in the Scopus database
—