5-choosability of graphs with. crossings far apart
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10364956" target="_blank" >RIV/00216208:11320/17:10364956 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jctb.2016.11.004" target="_blank" >http://dx.doi.org/10.1016/j.jctb.2016.11.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jctb.2016.11.004" target="_blank" >10.1016/j.jctb.2016.11.004</a>
Alternative languages
Result language
angličtina
Original language name
5-choosability of graphs with. crossings far apart
Original language description
We give a new proof of the fact that every planar graph is 5-choosable, and use it to show that every graph drawn in the plane so that the distance between every pair of crossings is at least 15 is 5-choosable. At the same time we may allow some vertices to have lists of size four only, as long as they are far apart and far from the crossings.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Theory. Series B
ISSN
0095-8956
e-ISSN
—
Volume of the periodical
123
Issue of the periodical within the volume
march
Country of publishing house
US - UNITED STATES
Number of pages
43
Pages from-to
54-96
UT code for WoS article
000393530200003
EID of the result in the Scopus database
—