4-CRITICAL GRAPHS ON SURFACES WITHOUT CONTRACTIBLE ({= 4)-CYCLES
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10283293" target="_blank" >RIV/00216208:11320/14:10283293 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1137/130920952" target="_blank" >http://dx.doi.org/10.1137/130920952</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/130920952" target="_blank" >10.1137/130920952</a>
Alternative languages
Result language
angličtina
Original language name
4-CRITICAL GRAPHS ON SURFACES WITHOUT CONTRACTIBLE ({= 4)-CYCLES
Original language description
We show that if G is a 4-critical graph embedded in a fixed surface S so that every contractible cycle has length at least 5, then G can be expressed as G = G'boolean OR G(1)boolean OR G(2)boolean OR ... boolean OR G(k), where vertical bar V (C')verticalbar| and k are bounded by a constant (depending linearly on the genus of Sigma) and C-1, ... , C-k are graphs (of unbounded size) whose structure we describe exactly. The proof is computer assisted-we use a computer to enumerate all plane 4-critical graphs of girth 5 with a precolored cycle of length at most 16 that are used in the basic case of the inductive proof of the statement.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
—
Volume of the periodical
28
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
32
Pages from-to
521-552
UT code for WoS article
000333685700036
EID of the result in the Scopus database
—