Maximal Marcinkiewicz multipliers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10283438" target="_blank" >RIV/00216208:11320/14:10283438 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11512-013-0189-9" target="_blank" >http://dx.doi.org/10.1007/s11512-013-0189-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11512-013-0189-9" target="_blank" >10.1007/s11512-013-0189-9</a>
Alternative languages
Result language
angličtina
Original language name
Maximal Marcinkiewicz multipliers
Original language description
Let M = {m(j)}(j=1)(infinity) be a family of Marcinkiewicz multipliers of sufficient uniform smoothness in . We show that the L (p) norm, 1 < p < a, of the related maximal operator is at most C(log(N+2)) (n/2). We show that this bound is sharp.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F12%2F0291" target="_blank" >GAP201/12/0291: Properties of weakly differentiable functions and mappings</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Arkiv for Matematik
ISSN
0004-2080
e-ISSN
—
Volume of the periodical
52
Issue of the periodical within the volume
1
Country of publishing house
SE - SWEDEN
Number of pages
12
Pages from-to
135-147
UT code for WoS article
000332797200009
EID of the result in the Scopus database
—