No-three-in-line problem on a torus: Periodicity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10404004" target="_blank" >RIV/00216208:11320/19:10404004 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=d__8apGqwG" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=d__8apGqwG</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2019.111611" target="_blank" >10.1016/j.disc.2019.111611</a>
Alternative languages
Result language
angličtina
Original language name
No-three-in-line problem on a torus: Periodicity
Original language description
Let tau(m,n) denote the maximal number of points on the discrete torus (discrete toric grid) of sizes m x n with no three collinear points. The value tau(m,n) is known for the case where gcd(m, n) is prime. It is also known that tau(m,n) <= 2 gcd(m, n). In this paper we generalize some of the known tools for determining tau(m,n) and also show some new. Using these tools we prove that the sequence (tau(z,n))(n is an element of N) is periodic for all fixed z > 1. In general, we do not know the period; however, if z = p(a) for p prime, then we can bound it. We prove that tau(pa,p(a-1)p+2) = 2p(a) which implies that the period for the sequence is p(b), where b is at most (a - 1)p + 2.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
342
Issue of the periodical within the volume
12
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
13
Pages from-to
111611
UT code for WoS article
000494885600021
EID of the result in the Scopus database
—