All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

No-three-in-line problem on a torus: Periodicity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10404004" target="_blank" >RIV/00216208:11320/19:10404004 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=d__8apGqwG" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=d__8apGqwG</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.disc.2019.111611" target="_blank" >10.1016/j.disc.2019.111611</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    No-three-in-line problem on a torus: Periodicity

  • Original language description

    Let tau(m,n) denote the maximal number of points on the discrete torus (discrete toric grid) of sizes m x n with no three collinear points. The value tau(m,n) is known for the case where gcd(m, n) is prime. It is also known that tau(m,n) &lt;= 2 gcd(m, n). In this paper we generalize some of the known tools for determining tau(m,n) and also show some new. Using these tools we prove that the sequence (tau(z,n))(n is an element of N) is periodic for all fixed z &gt; 1. In general, we do not know the period; however, if z = p(a) for p prime, then we can bound it. We prove that tau(pa,p(a-1)p+2) = 2p(a) which implies that the period for the sequence is p(b), where b is at most (a - 1)p + 2.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete Mathematics

  • ISSN

    0012-365X

  • e-ISSN

  • Volume of the periodical

    342

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    13

  • Pages from-to

    111611

  • UT code for WoS article

    000494885600021

  • EID of the result in the Scopus database