All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ON THE ORDER OF APPEARANCE OF THE DIFFERENCE OF TWO LUCAS NUMBERS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F18%3A50014542" target="_blank" >RIV/62690094:18470/18:50014542 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.18514/MMN.2018.1750" target="_blank" >http://dx.doi.org/10.18514/MMN.2018.1750</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18514/MMN.2018.1750" target="_blank" >10.18514/MMN.2018.1750</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ON THE ORDER OF APPEARANCE OF THE DIFFERENCE OF TWO LUCAS NUMBERS

  • Original language description

    Let F_n be the nth Fibonacci number and let Ln be the nth Lucas number. The order of appearance z(n) of a natural number n is defined as the smallest natural number k such that n divides F_k. For instance, z(L_n)=2n, for all n &gt; 2. In this paper, among other things, we prove that z(L_m-L_n) = 5F_p(m^2 - n^2)/(4p), for all distinct positive integers m equiv n (mod 4), with gcd(m,n) = p &gt; 2 prime.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Miskolc mathematical notes

  • ISSN

    1787-2405

  • e-ISSN

  • Volume of the periodical

    19

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    HU - HUNGARY

  • Number of pages

    8

  • Pages from-to

    641-648

  • UT code for WoS article

    000441460300050

  • EID of the result in the Scopus database