The order of appearance of the sum and difference between two Fibonacci numbers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F19%3A50014401" target="_blank" >RIV/62690094:18470/19:50014401 - isvavai.cz</a>
Result on the web
<a href="https://www.worldscientific.com/doi/abs/10.1142/S1793557119500463" target="_blank" >https://www.worldscientific.com/doi/abs/10.1142/S1793557119500463</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S1793557119500463" target="_blank" >10.1142/S1793557119500463</a>
Alternative languages
Result language
angličtina
Original language name
The order of appearance of the sum and difference between two Fibonacci numbers
Original language description
Let Fn be the nth Fibonacci number and Ln be the nth Lucas number. The order of appearance z(n) of a natural number n is defined as the smallest natural number k such that n divides Fk. For instance, z(Fn) = n, for all n > 2. In this paper, among other things, we prove that z(Fm−Fn) depends on Lp, where p is the greatest common divisor of numbers m and n, which fulfill the condition m ≡ n (mod 2).
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Asian-European journal of mathematics
ISSN
1793-5571
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
3
Country of publishing house
SG - SINGAPORE
Number of pages
10
Pages from-to
"Article number: 1950046"
UT code for WoS article
000469239100015
EID of the result in the Scopus database
2-s2.0-85046493078