Hybrid Multi-Agent System for Metalearning in Data Mining
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10284612" target="_blank" >RIV/00216208:11320/14:10284612 - isvavai.cz</a>
Result on the web
<a href="http://ceur-ws.org/Vol-1201/paper-13.pdf" target="_blank" >http://ceur-ws.org/Vol-1201/paper-13.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Hybrid Multi-Agent System for Metalearning in Data Mining
Original language description
In this paper, a multi-agent system for metalearning in the data mining domain is presented. The system provides a user with intelligent features, such as recommendation of suitable data mining techniques for a new dataset, parameter tuning of such techniques, and building up a metaknowledge base. The architecture of the system, together with different user scenarios, and the way they are handled by the system, are described.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
(2014) CEUR Workshop Proceedings
ISBN
—
ISSN
1613-0073
e-ISSN
—
Number of pages
2
Pages from-to
53-54
Publisher name
CEUR-WS
Place of publication
Neuveden
Event location
Praha
Event date
Aug 19, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—