All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

TILTING, COTILTING, AND SPECTRA OF COMMUTATIVE NOETHERIAN RINGS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10285310" target="_blank" >RIV/00216208:11320/14:10285310 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1090/S0002-9947-2014-05904-7" target="_blank" >http://dx.doi.org/10.1090/S0002-9947-2014-05904-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/S0002-9947-2014-05904-7" target="_blank" >10.1090/S0002-9947-2014-05904-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    TILTING, COTILTING, AND SPECTRA OF COMMUTATIVE NOETHERIAN RINGS

  • Original language description

    We classify all tilting and cotilting classes over commutative noetherian rings in terms of descending sequences of specialization closed subsets of the Zariski spectrum. Consequently, all resolving subcategories of finitely generated modules of boundedprojective dimension are classified. We also relate our results to Hochster's Conjecture on the existence of finitely generated maximal Cohen-Macaulay modules.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Transactions of the American Mathematical Society

  • ISSN

    0002-9947

  • e-ISSN

  • Volume of the periodical

    366

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    31

  • Pages from-to

    3487-3517

  • UT code for WoS article

    000337230700007

  • EID of the result in the Scopus database