One-tilting classes and modules over commutative rings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369257" target="_blank" >RIV/00216208:11320/17:10369257 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jalgebra.2016.05.014" target="_blank" >http://dx.doi.org/10.1016/j.jalgebra.2016.05.014</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jalgebra.2016.05.014" target="_blank" >10.1016/j.jalgebra.2016.05.014</a>
Alternative languages
Result language
angličtina
Original language name
One-tilting classes and modules over commutative rings
Original language description
We classify 1-tilting classes over an arbitrary commutative ring. As a consequence, we classify all resolving subcategories of finitely presented modules of projective dimension at most 1. Both these collections are in 1-1 correspondence with faithful Gabriel topologies of finite type, or equivalently, with Thomason subsets of the spectrum avoiding a set of primes associated in a specific way to the ring. We also provide a generalization of the classical Fuchs and Salce tilting modules, and classify the equivalence classes of all 1-tilting modules. Finally we characterize the cases when tilting modules arise from perfect localizations.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA14-15479S" target="_blank" >GA14-15479S: Representation Theory (Structural Decompositions and Their Constraints)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Algebra
ISSN
0021-8693
e-ISSN
—
Volume of the periodical
2016
Issue of the periodical within the volume
462
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
1-22
UT code for WoS article
000380382100001
EID of the result in the Scopus database
—