All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

One-tilting classes and modules over commutative rings

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369257" target="_blank" >RIV/00216208:11320/17:10369257 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jalgebra.2016.05.014" target="_blank" >http://dx.doi.org/10.1016/j.jalgebra.2016.05.014</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jalgebra.2016.05.014" target="_blank" >10.1016/j.jalgebra.2016.05.014</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    One-tilting classes and modules over commutative rings

  • Original language description

    We classify 1-tilting classes over an arbitrary commutative ring. As a consequence, we classify all resolving subcategories of finitely presented modules of projective dimension at most 1. Both these collections are in 1-1 correspondence with faithful Gabriel topologies of finite type, or equivalently, with Thomason subsets of the spectrum avoiding a set of primes associated in a specific way to the ring. We also provide a generalization of the classical Fuchs and Salce tilting modules, and classify the equivalence classes of all 1-tilting modules. Finally we characterize the cases when tilting modules arise from perfect localizations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA14-15479S" target="_blank" >GA14-15479S: Representation Theory (Structural Decompositions and Their Constraints)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Algebra

  • ISSN

    0021-8693

  • e-ISSN

  • Volume of the periodical

    2016

  • Issue of the periodical within the volume

    462

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    22

  • Pages from-to

    1-22

  • UT code for WoS article

    000380382100001

  • EID of the result in the Scopus database