All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tilting classes over commutative rings

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00518738" target="_blank" >RIV/67985840:_____/20:00518738 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/20:10420996

  • Result on the web

    <a href="https://doi.org/10.1515/forum-2017-0219" target="_blank" >https://doi.org/10.1515/forum-2017-0219</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/forum-2017-0219" target="_blank" >10.1515/forum-2017-0219</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tilting classes over commutative rings

  • Original language description

    We classify all tilting classes over an arbitrary commutative ring via certain sequences of Thomason subsets of the spectrum, generalizing the classification for noetherian commutative rings by Angeleri, Pospíšil, Šťovíček and Trlifaj (2014). We show that the n-tilting classes can equivalently be expressed as classes of all modules vanishing in the first n degrees of one of the following homology theories arising from a finitely generated ideal: Tor∗(R/I,−), Koszul homology, Čech homology, or local homology (even though in general none of those theories coincide). Cofinite-type n-cotilting classes are described by vanishing of the corresponding cohomology theories. For any cotilting class of cofinite type, we also construct a corresponding cotilting module, generalizing the construction of Šťovíček, Trlifaj and Herbera (2014).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA14-15479S" target="_blank" >GA14-15479S: Representation Theory (Structural Decompositions and Their Constraints)</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Forum Mathematicum

  • ISSN

    0933-7741

  • e-ISSN

  • Volume of the periodical

    32

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    33

  • Pages from-to

    235-267

  • UT code for WoS article

    000505560100014

  • EID of the result in the Scopus database

    2-s2.0-85093173597