Tilting and Cotilting Classes Over Gorenstein Rings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F09%3A10050008" target="_blank" >RIV/00216208:11320/09:10050008 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Tilting and Cotilting Classes Over Gorenstein Rings
Original language description
Let R be a Gorenstein ring of Krull dimension n } 0. For each subset P of the set of all prime ideals of height } 0, we construct a tilting class T (P) and a cotilting class C (P) so that T (P) neq T (Q), and C (Q) neq C (Q), for all P neq Q. For the case of n=1 we prove that the classes T(P) are the only tilting classes of modules, that is, all tilting modules are equivalent to the Bass ones. We also prove the dual characterization for cotilting modules, which implies that all cotilting modules are hereditary in this case.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Contemporary Mathematics
ISBN
978-0-8218-4370-3
Number of pages of the result
16
Pages from-to
—
Number of pages of the book
361
Publisher name
Amer Mathematical Soc
Place of publication
Providence, USA
UT code for WoS chapter
—