Colocalization and cotilting for commutative noetherian rings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10285304" target="_blank" >RIV/00216208:11320/14:10285304 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jalgebra.2014.03.015" target="_blank" >http://dx.doi.org/10.1016/j.jalgebra.2014.03.015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jalgebra.2014.03.015" target="_blank" >10.1016/j.jalgebra.2014.03.015</a>
Alternative languages
Result language
angličtina
Original language name
Colocalization and cotilting for commutative noetherian rings
Original language description
For a commutative noetherian ring R, we investigate relations between tilting and cotilting modules in Mod R and Mod R,, where in runs over the maximal spectrum of R. For each n < omega, we construct a 1-1 correspondence between (equivalence classes of)n-cotilting R-modules C and (equivalence classes of) compatible families,F of n-cotilting R-m-modules (m is an element of mSpec(R)). It is induced by the assignment C -> (C-m vertical bar m is an element of mSpec(R)), where C-m = Hom(R)(R C) is the colocalization of C at m, and its inverse F -> T Pi(F is an element of F) . We construct a similar correspondence for n-tilting modules using compatible families of localizations; however, there is no explicit formula for the inverse. (C) 2014 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0816" target="_blank" >GA201/09/0816: Algebraic Methods in the Representation Theory (Approximations, Realizations, and Constraints)</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Algebra
ISSN
0021-8693
e-ISSN
—
Volume of the periodical
408
Issue of the periodical within the volume
2014
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
28-41
UT code for WoS article
000335934500002
EID of the result in the Scopus database
—