Cotilting modules over commutative Noetherian rings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10285292" target="_blank" >RIV/00216208:11320/14:10285292 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jpaa.2014.01.008" target="_blank" >http://dx.doi.org/10.1016/j.jpaa.2014.01.008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jpaa.2014.01.008" target="_blank" >10.1016/j.jpaa.2014.01.008</a>
Alternative languages
Result language
angličtina
Original language name
Cotilting modules over commutative Noetherian rings
Original language description
Recently, tilting and cotilting classes over commutative Noetherian rings have been classified. We proceed and, for each n-cotilting class C, construct an n-cotilting module inducing C by an iteration of injective precovers. A further refinement of the construction yields the unique minimal n-cotilting module inducing C. Finally, we consider localization: a cotilting module is called ample, if all of its localizations are cotilting. We prove that for each 1-cotilting class, there exists an ample cotilting module inducing it, but give an example of a 2-cotilting class which fails this property.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Pure and Applied Algebra
ISSN
0022-4049
e-ISSN
—
Volume of the periodical
218
Issue of the periodical within the volume
9
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
16
Pages from-to
1696-1711
UT code for WoS article
000337870000011
EID of the result in the Scopus database
—