Strong solutions to the Navier-Stokes-Fourier system with slip-inflow boundary conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10285412" target="_blank" >RIV/00216208:11320/14:10285412 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/zamm.201300014" target="_blank" >http://dx.doi.org/10.1002/zamm.201300014</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/zamm.201300014" target="_blank" >10.1002/zamm.201300014</a>
Alternative languages
Result language
angličtina
Original language name
Strong solutions to the Navier-Stokes-Fourier system with slip-inflow boundary conditions
Original language description
We consider a system of partial differential equations describing the steady flow of a compressible heat conducting Newtonian fluid in a three-dimensional channel with inflow and outflow part. We show the existence of a strong solution provided the dataare close to a constant, but nontrivial flow with sufficiently large dissipation in the energy equation. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Mathematical and computer analysis of the evolution processes in nonlinear viscoelastic fluid-like materials</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ZAMM Zeitschrift für Angewandte Mathematik und Mechanik
ISSN
0044-2267
e-ISSN
—
Volume of the periodical
94
Issue of the periodical within the volume
12
Country of publishing house
DE - GERMANY
Number of pages
23
Pages from-to
1035-1057
UT code for WoS article
000345975800006
EID of the result in the Scopus database
—