All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

MOD-RETRACTABLE RINGS

Result description

A right module M over a ring R is said to be retractable if Hom(R)(M, N)0 for each nonzero submodule N of M. We show that M circle times(R)RG is a retractable RG-module if and only if M-R is retractable for every finite group G. The ring R is (finitely)mod-retractable if every (finitely generated) right R-module is retractable. Some comparisons between max rings, semiartinian rings, perfect rings, noetherian rings, nonsingular rings, and mod-retractable rings are investigated. In particular, we prove ring-theoretical criteria of right mod-retractability for classes of all commutative, left perfect, and right noetherian rings.

Keywords

16D50Semiartinian ringsRetractable modulePerfect ringsNonsingular ringsNoetherian ringsMax ringsGroup module

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    MOD-RETRACTABLE RINGS

  • Original language description

    A right module M over a ring R is said to be retractable if Hom(R)(M, N)0 for each nonzero submodule N of M. We show that M circle times(R)RG is a retractable RG-module if and only if M-R is retractable for every finite group G. The ring R is (finitely)mod-retractable if every (finitely generated) right R-module is retractable. Some comparisons between max rings, semiartinian rings, perfect rings, noetherian rings, nonsingular rings, and mod-retractable rings are investigated. In particular, we prove ring-theoretical criteria of right mod-retractability for classes of all commutative, left perfect, and right noetherian rings.

  • Czech name

  • Czech description

Classification

  • Type

    Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)
    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Communications in Algebra

  • ISSN

    0092-7872

  • e-ISSN

  • Volume of the periodical

    42

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    998-1010

  • UT code for WoS article

    000327155600005

  • EID of the result in the Scopus database

Basic information

Result type

Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

Jx

CEP

BA - General mathematics

Year of implementation

2014