MOD-RETRACTABLE RINGS
Result description
A right module M over a ring R is said to be retractable if Hom(R)(M, N)0 for each nonzero submodule N of M. We show that M circle times(R)RG is a retractable RG-module if and only if M-R is retractable for every finite group G. The ring R is (finitely)mod-retractable if every (finitely generated) right R-module is retractable. Some comparisons between max rings, semiartinian rings, perfect rings, noetherian rings, nonsingular rings, and mod-retractable rings are investigated. In particular, we prove ring-theoretical criteria of right mod-retractability for classes of all commutative, left perfect, and right noetherian rings.
Keywords
16D50Semiartinian ringsRetractable modulePerfect ringsNonsingular ringsNoetherian ringsMax ringsGroup module
The result's identifiers
Result code in IS VaVaI
Result on the web
DOI - Digital Object Identifier
Alternative languages
Result language
angličtina
Original language name
MOD-RETRACTABLE RINGS
Original language description
A right module M over a ring R is said to be retractable if Hom(R)(M, N)0 for each nonzero submodule N of M. We show that M circle times(R)RG is a retractable RG-module if and only if M-R is retractable for every finite group G. The ring R is (finitely)mod-retractable if every (finitely generated) right R-module is retractable. Some comparisons between max rings, semiartinian rings, perfect rings, noetherian rings, nonsingular rings, and mod-retractable rings are investigated. In particular, we prove ring-theoretical criteria of right mod-retractability for classes of all commutative, left perfect, and right noetherian rings.
Czech name
—
Czech description
—
Classification
Type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Algebra
ISSN
0092-7872
e-ISSN
—
Volume of the periodical
42
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
998-1010
UT code for WoS article
000327155600005
EID of the result in the Scopus database
—
Basic information
Result type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP
BA - General mathematics
Year of implementation
2014