All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ERDOS-SZEKERES-TYPE STATEMENTS: RAMSEY FUNCTION AND DECIDABILITY IN DIMENSION 1

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10286480" target="_blank" >RIV/00216208:11320/14:10286480 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1215/00127094-2785915" target="_blank" >http://dx.doi.org/10.1215/00127094-2785915</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1215/00127094-2785915" target="_blank" >10.1215/00127094-2785915</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ERDOS-SZEKERES-TYPE STATEMENTS: RAMSEY FUNCTION AND DECIDABILITY IN DIMENSION 1

  • Original language description

    A classical and widely used lemma of Erdos and Szekeres asserts that for every n there exists N such that every N-term sequence a of real numbers contains an n-term increasing subsequence or an n-term nonincreasing subsequence; quantitatively, the smallest N with this property equals (n - 1)(2) + 1. We express this lemma by saying that the set of predicates Phi = {x(1) < x(2), x(1) > x(2)} is Erdos-Szekeres with Ramsey function ES Phi (n) = (n - 1)(2) + 1. In general, we consider an arbitrary finite setPhi = {Phi(1), ... , Phi(m)} of semialgebraic predicates, meaning that each Phi(j) = Phi(j) (x(1), ... , x(k)) is a Boolean combination of polynomial equations and inequalities in some number k of real variables. We define Phi to be Erdos-Szekeres if for every n there exists N such that each N-term sequence (a) of real numbers has an n-term subsequence (b) such that at least one of the Phi(j) holds everywhere on (b) which means that Phi(j) (b(i1), ... , b(ik)) holds for every choice of

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Duke Mathematical Journal

  • ISSN

    0012-7094

  • e-ISSN

  • Volume of the periodical

    163

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    28

  • Pages from-to

    2243-2270

  • UT code for WoS article

    000341467800003

  • EID of the result in the Scopus database