Triple systems and binary operations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10287285" target="_blank" >RIV/00216208:11320/14:10287285 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.disc.2014.02.007" target="_blank" >http://dx.doi.org/10.1016/j.disc.2014.02.007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2014.02.007" target="_blank" >10.1016/j.disc.2014.02.007</a>
Alternative languages
Result language
angličtina
Original language name
Triple systems and binary operations
Original language description
It is well known that given a Steiner triple system (STS) one can define a binary operation * upon its base set by assigning x * x = x for all x and x * y = z, where z is the third point in the block containing the pair {x, y}. The same can be done for Mendelsohn triple systems (MTSs) as well as hybrid triple systems (HTSs), where (x, y) is considered to be ordered. In the case of STSs and MTSs, the operation is a quasigroup, however this is not necessarily the case for HTSs. In this paper we study thebinary operation induced by HTSs. It turns out that each such operation * satisfies y is an element of {x * (x * y), (x * y) * x} and y is an element of {(y * x) * x, x * (y * x)} for all x and y from the base set. We call every binary operation that fulfils this condition hybridly symmetric. Not all idempotent hybridly symmetric operations can be obtained from HTSs. We show that these operations correspond to decompositions of a complete digraph into certain digraphs on three vertices.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
2014
Issue of the periodical within the volume
323
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
1-11
UT code for WoS article
000335203000001
EID of the result in the Scopus database
—