All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Minimal Obstructions for Partial Representations of Interval Graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10288454" target="_blank" >RIV/00216208:11320/14:10288454 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007%2F978-3-319-13075-0_32" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-13075-0_32</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-13075-0_32" target="_blank" >10.1007/978-3-319-13075-0_32</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Minimal Obstructions for Partial Representations of Interval Graphs

  • Original language description

    Interval graphs are intersection graphs of closed intervals. A generalization of recognition called partial representation extension was introduced recently. The input gives an interval graph with a partial representation specifying some pre-drawn intervals. We ask whether the remaining intervals can be added to create an extending representation. In this paper, we characterize the minimal obstructions which make a partial representation non-extendible. This generalizes Lekkerkerker and Boland's characterization of minimal forbidden induced subgraphs of interval graphs. Each minimal obstruction consists of a forbidden induced subgraph together with at most four pre-drawn intervals. A Helly-type result follows: A partial representation is extendible ifand only if every quadruple of pre-drawn intervals is extendible by itself. Our characterization leads to the first polynomial-time certifying algorithm for partial representation extension of intersection graphs.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Algorithms and Computation

  • ISBN

    978-3-319-13074-3

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    401-413

  • Publisher name

    Springer International Publishing

  • Place of publication

    Switzerland

  • Event location

    Jeonju, South Korea

  • Event date

    Dec 15, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article