INFINITELY GENERATED PROJECTIVE MODULES OVER PULLBACKS OF RINGS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10288465" target="_blank" >RIV/00216208:11320/14:10288465 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
INFINITELY GENERATED PROJECTIVE MODULES OVER PULLBACKS OF RINGS
Original language description
We use pullbacks of rings to realize the submonoids M of (N-0 boolean OR {infinity})(k), which are the set of solutions of a finite system of linear diophantine inequalities as the monoid of isomorphism classes of countably generated projective right R-modules over a suitable semilocal ring. For these rings, the behavior of countably generated projective left R-modules is determined by the monoid D(M) defined by reversing the inequalities determining the monoid M. These two monoids are not isomorphic ingeneral. As a consequence of our results we show that there are semilocal rings such that all its projective right modules are free but this fails for projective left modules. This answers in the negative a question posed by Fuller and Shutters. We alsoprovide a rich variety of examples of semilocal rings having nonfinitely generated projective modules that are finitely generated modulo the Jacobson radical.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Transactions of the American Mathematical Society
ISSN
0002-9947
e-ISSN
—
Volume of the periodical
366
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
1433-1454
UT code for WoS article
000329123600013
EID of the result in the Scopus database
—