Multiple Scales and Singular Limits for Compressible Rotating Fluids with General Initial Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10290302" target="_blank" >RIV/00216208:11320/14:10290302 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1080/03605302.2013.856917" target="_blank" >http://dx.doi.org/10.1080/03605302.2013.856917</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/03605302.2013.856917" target="_blank" >10.1080/03605302.2013.856917</a>
Alternative languages
Result language
angličtina
Original language name
Multiple Scales and Singular Limits for Compressible Rotating Fluids with General Initial Data
Original language description
We study the singular limit of a rotating compressible fluid described by a scaled barotropic Navier-Stokes system, where the Rossby number=E, the Mach number=E-m, the Reynolds number=E-, and the Froude number=E-n are proportional to a small parameter E0. The inviscid planar Euler system is identified as the limit problem. The proof is based on the application of the method of relative entropies and careful analysis of oscillatory integrals describing the propagation of Rossby-acoustic waves.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LL1202" target="_blank" >LL1202: Implicitly constituted material models: from theory through model reduction to efficient numerical methods</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Partial Differential Equations
ISSN
0360-5302
e-ISSN
—
Volume of the periodical
39
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
24
Pages from-to
1104-1127
UT code for WoS article
000335822700004
EID of the result in the Scopus database
—