Multi-scale analysis of compressible viscous and rotating fluids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F12%3A00380309" target="_blank" >RIV/67985840:_____/12:00380309 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00220-012-1533-9" target="_blank" >http://dx.doi.org/10.1007/s00220-012-1533-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00220-012-1533-9" target="_blank" >10.1007/s00220-012-1533-9</a>
Alternative languages
Result language
angličtina
Original language name
Multi-scale analysis of compressible viscous and rotating fluids
Original language description
We study a singular limit for the compressible Navier-Stokes system when the Mach and Rossby numbers are proportional to certain powers of a small parameter ?. If the Rossby number dominates the Mach number, the limit problem is represented by the 2-D incompressible Navier-Stokes system describing the horizontal motion of vertical averages of the velocity field. If they are of the same order then the limit problem turns out to be a linear, 2-D equation with a unique radially symmetric solution. The effect of the centrifugal force is taken into account.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Mathematical and computer analysis of the evolution processes in nonlinear viscoelastic fluid-like materials</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Mathematical Physics
ISSN
0010-3616
e-ISSN
—
Volume of the periodical
314
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
30
Pages from-to
641-670
UT code for WoS article
000308042700003
EID of the result in the Scopus database
—