Relative Motions of Free Test Particles in Robinson-Trautman Spacetimes of Any Dimension
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10291355" target="_blank" >RIV/00216208:11320/14:10291355 - isvavai.cz</a>
Alternative codes found
RIV/44555601:13440/14:43885731
Result on the web
<a href="http://link.springer.com/chapter/10.1007/978-3-642-40157-2_63" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-642-40157-2_63</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-40157-2_63" target="_blank" >10.1007/978-3-642-40157-2_63</a>
Alternative languages
Result language
angličtina
Original language name
Relative Motions of Free Test Particles in Robinson-Trautman Spacetimes of Any Dimension
Original language description
Using the invariant form of equation of geodesic deviation we analyze the relative deformations of a congruence of free test particles in general non-twisting, shearfree and expanding geometries. In four dimensions this class of exact solutions includesimportant classes of expanding gravitational waves. On the other hand, higher-dimensional Robinson-Trautman spacetimes can only be of algebraic type D. We emphasize the difference between the standard four-dimensional solutions and their arbitrary-dimensional extensions from the physical point of view of a geodesic observer.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Progress in Mathematical Relativity, Gravitation and Cosmology
ISBN
978-3-642-40156-5
ISSN
2194-1009
e-ISSN
—
Number of pages
5
Pages from-to
415-419
Publisher name
Springer
Place of publication
Berlin, Heidelberg
Event location
University of Minho, Guimar?es, Portugal
Event date
Sep 3, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—