All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Geodesic mappings of (pseudo-) Riemannian manifolds preserve class of differentiability

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F13%3A33145768" target="_blank" >RIV/61989592:15310/13:33145768 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Geodesic mappings of (pseudo-) Riemannian manifolds preserve class of differentiability

  • Original language description

    In this paper, we prove that geodesic mappings of (pseudo-) Riemannian manifolds preserve the class of differentiability. Also, if the Einstein space admits a nontrivial geodesic mapping onto a (pseudo-) Riemannian manifold, then its is an Einstein space. If a four-dimensional Einstein space with non-constant curvature globally admits a geodesic mapping onto a (pseudo-) Riemannian manifold, then the mapping is affine and, moreover, if the scalar curvature is non-vanishing, then the mapping is homothetic.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP201%2F11%2F0356" target="_blank" >GAP201/11/0356: Riemannian, pseudo-Riemannian and affine differential geometry</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Miskolc Mathematical Notes (print)

  • ISSN

    1787-2405

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    HU - HUNGARY

  • Number of pages

    8

  • Pages from-to

    "575?582"

  • UT code for WoS article

    000329498700019

  • EID of the result in the Scopus database