Geodesic mappings of (pseudo-) Riemannian manifolds preserve class of differentiability
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F13%3A33145768" target="_blank" >RIV/61989592:15310/13:33145768 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Geodesic mappings of (pseudo-) Riemannian manifolds preserve class of differentiability
Original language description
In this paper, we prove that geodesic mappings of (pseudo-) Riemannian manifolds preserve the class of differentiability. Also, if the Einstein space admits a nontrivial geodesic mapping onto a (pseudo-) Riemannian manifold, then its is an Einstein space. If a four-dimensional Einstein space with non-constant curvature globally admits a geodesic mapping onto a (pseudo-) Riemannian manifold, then the mapping is affine and, moreover, if the scalar curvature is non-vanishing, then the mapping is homothetic.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F0356" target="_blank" >GAP201/11/0356: Riemannian, pseudo-Riemannian and affine differential geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Miskolc Mathematical Notes (print)
ISSN
1787-2405
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
2
Country of publishing house
HU - HUNGARY
Number of pages
8
Pages from-to
"575?582"
UT code for WoS article
000329498700019
EID of the result in the Scopus database
—