All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Geodesic Mapping onto Riemannian Manifolds and Differentiability

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73583842" target="_blank" >RIV/61989592:15310/17:73583842 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.7546/giq-18-2017-183-190" target="_blank" >http://dx.doi.org/10.7546/giq-18-2017-183-190</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.7546/giq-18-2017-183-190" target="_blank" >10.7546/giq-18-2017-183-190</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Geodesic Mapping onto Riemannian Manifolds and Differentiability

  • Original language description

    In this paper we study fundamental equations of geodesic mappings of manifolds with affine connection onto (pseudo-) Riemannian manifolds. We proved that if a manifold with affine (or projective) connection of differentiability class Cr (r &gt;1) admits a geodesic mapping onto a (pseudo-) Riemannian manifold of class C1, then this manifold belongs to the differentiability class C(r+1). From this result follows if an Einstein spaces admits non-trivial geodesic mappings onto (pseudo-) Riemannian manifolds of class C1 then this manifold is an Einstein space, and there exists a common coordinate system in which the components of the metric of these Einstein manifolds are real analytic functions.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Geometry, Integrability and Quantization

  • ISBN

  • ISSN

    1314-3247

  • e-ISSN

    neuvedeno

  • Number of pages

    8

  • Pages from-to

    "183–190"

  • Publisher name

    Avangard Prima

  • Place of publication

    Sofia

  • Event location

    Varna

  • Event date

    Jun 3, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000435119200009