On geodesic mappings of Einstein spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F03%3A00001581" target="_blank" >RIV/61989592:15310/03:00001581 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
ruština
Original language name
On geodesic mappings of Einstein spaces
Original language description
The authors proved the following: Theorem. A four-dimensional Einstein space which is not the space of constant curvature does not admit non-trivial geodesic mappings. So with respect to geodesic mappings, one more class of spaces is uniquely distinguished by this theorem. The theorem means a strengthening of the results of A.Z. Petrov and V.I. Golikov. A.Z. Petrov has stated the following hypothesis: An Einstein space $V_n$ ($n>4$) with Minkowski signature which is not the space of constant curvature does not admit non-trivial geodesic mappings onto a Riemannian space of the same signature. The authors disproved this hypothesis by the example
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
DE - Earth magnetism, geodesy, geography
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F02%2F0616" target="_blank" >GA201/02/0616: Computer-assisted research in differential geometry and applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Izvedenije vuzov
ISSN
—
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
N
Country of publishing house
RU - RUSSIAN FEDERATION
Number of pages
6
Pages from-to
36-41
UT code for WoS article
—
EID of the result in the Scopus database
—