Bend-optimal orthogonal graph drawing in the general position model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10291626" target="_blank" >RIV/00216208:11320/14:10291626 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.comgeo.2013.03.002" target="_blank" >http://dx.doi.org/10.1016/j.comgeo.2013.03.002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.comgeo.2013.03.002" target="_blank" >10.1016/j.comgeo.2013.03.002</a>
Alternative languages
Result language
angličtina
Original language name
Bend-optimal orthogonal graph drawing in the general position model
Original language description
We consider orthogonal drawings in the general position model, i.e., no two points share a coordinate. The drawings are also required to be bend minimal, i.e., each edge of a drawing in k dimensions has exactly one segment parallel to each coordinate direction that are glued together at k 1 bends. We provide a precise description of the class of graphs that admit an orthogonal drawing in the general position model in the plane. The main tools for the proof are Eulerian orientations of graphs and discrete harmonic functions. The tools developed for the planar case can also be applied in higher dimensions. We discuss two-bend drawings in three dimensions and show that K2k+2 admits a k-bend drawing in k + 1 dimensions. If we allow that a vertex is placedat infinity, we can draw K2k+3 with k bends in k + 1 dimensions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computational Geometry: Theory and Applications
ISSN
0925-7721
e-ISSN
—
Volume of the periodical
47
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
460-468
UT code for WoS article
000330084600002
EID of the result in the Scopus database
—