On k-convex point sets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10291630" target="_blank" >RIV/00216208:11320/14:10291630 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.comgeo.2014.04.004" target="_blank" >http://dx.doi.org/10.1016/j.comgeo.2014.04.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.comgeo.2014.04.004" target="_blank" >10.1016/j.comgeo.2014.04.004</a>
Alternative languages
Result language
angličtina
Original language name
On k-convex point sets
Original language description
We extend the (recently introduced) notion of k-convexity of a two-dimensional subset of the Euclidean plane to finite point sets. A set of n points is considered k-convex if there exists a spanning (simple) polygonization such that the intersection of any straight line with its interior consists of at most k disjoint intervals. As the main combinatorial result, we show that every n-point set contains a subset of Omega(log(2) n) points that are in 2-convex position. This bound is asymptotically tight. From an algorithmic point of view, we show that 2-convexity of a finite point set can be decided in polynomial time, whereas the corresponding problem on k-convexity becomes NP-complete for any fixed k }= 3.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computational Geometry: Theory and Applications
ISSN
0925-7721
e-ISSN
—
Volume of the periodical
47
Issue of the periodical within the volume
8
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
23
Pages from-to
809-832
UT code for WoS article
000337771400003
EID of the result in the Scopus database
—