All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Erdos-Szekeres-type problems for k-convex point sets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420185" target="_blank" >RIV/00216208:11320/20:10420185 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3D83ELsX7b" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3D83ELsX7b</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ejc.2020.103157" target="_blank" >10.1016/j.ejc.2020.103157</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Erdos-Szekeres-type problems for k-convex point sets

  • Original language description

    We study Erdos-Szekeres-type problems for k-convex point sets, a recently introduced notion that naturally extends the concept of convex position. A finite set S of n points is k-convex if there exists a spanning simple polygonization of S such that the intersection of any straight line with its interior consists of at most k connected components. We address several open problems about k-convex point sets. In particular, we extend the well-known Erdos-Szekeres Theorem by showing that, for every fixed k is an element of N, every set of n points in the plane in general position (with no three collinear points) contains a k-convex subset of size at least Omega(log(k) n). We also show that there are arbitrarily large 3-convex sets of n points in the plane in general position whose largest 1-convex subset has size O(logn). This gives a solution to a problem posed by Aichholzer et al. (2014). We prove that there is a constant c &gt; 0 such that, for every n is an element of N, there is a set S of n points in the plane in general position such that every 2-convex polygon spanned by at least c . logn points from S contains a point of S in its interior. This matches an earlier upper bound by Aichholzer et al. (2014) up to a multiplicative constant and answers another of their open problems. (C) 2020 Elsevier Ltd. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-19158S" target="_blank" >GA18-19158S: Algorithmic, structural and complexity aspects of geometric and other configurations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Journal of Combinatorics

  • ISSN

    0195-6698

  • e-ISSN

  • Volume of the periodical

    89

  • Issue of the periodical within the volume

    27 May

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    22

  • Pages from-to

    103157

  • UT code for WoS article

    000556551000015

  • EID of the result in the Scopus database

    2-s2.0-85085320484