Holes in 2-Convex Point Sets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10384922" target="_blank" >RIV/00216208:11320/18:10384922 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-319-78825-8_14" target="_blank" >https://doi.org/10.1007/978-3-319-78825-8_14</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-78825-8_14" target="_blank" >10.1007/978-3-319-78825-8_14</a>
Alternative languages
Result language
angličtina
Original language name
Holes in 2-Convex Point Sets
Original language description
Let S be a set of n points in the plane in general position (no three points from S are collinear). For a positive integer k, a k-hole in S is a convex polygon with k vertices from S and no points of S in its interior. For a positive integer l, a simple polygon P is l-convex if no straight line intersects the interior of P in more than l connected components. A point set S is l-convex if there exists an l-convex polygonization of S. Considering a typical Erd. os-Szekeres-type problem, we show that every 2-convex point set of size n contains an Omega(log n)-hole. In comparison, it is well known that there exist arbitrarily large point sets in general position with no 7-hole. Further, we show that our bound is tight by constructing 2-convex point sets with holes of size at most O(log n).
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
COMBINATORIAL ALGORITHMS, IWOCA 2017
ISBN
978-3-319-78825-8
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
13
Pages from-to
169-181
Publisher name
SPRINGER INTERNATIONAL PUBLISHING AG
Place of publication
CHAM
Event location
Newcastle
Event date
Jul 17, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000445803300014