All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Saturated simple and k-simple topological graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10284157" target="_blank" >RIV/00216208:11320/15:10284157 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S0925772114001151/pdfft?md5=fa73a922ee909670fcb57b7b5a5eb546&pid=1-s2.0-S0925772114001151-main.pdf" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0925772114001151/pdfft?md5=fa73a922ee909670fcb57b7b5a5eb546&pid=1-s2.0-S0925772114001151-main.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.comgeo.2014.10.008" target="_blank" >10.1016/j.comgeo.2014.10.008</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Saturated simple and k-simple topological graphs

  • Original language description

    A simple topological graph G is a graph drawn in the plane so that any pair of edges have at most one point in common, which is either an endpoint or a proper crossing. G is called saturated if no further edge can be added without violating this condition. We construct saturated simple topological graphs with n vertices and O(n) edges. For every k>1, we give similar constructions for k-simple topological graphs, that is, for graphs drawn in the plane so that any two edges have at most k points in common. We show that in any k-simple topological graph, any two independent vertices can be connected by a curve that crosses each of the original edges at most 2k times. Another construction shows that the bound 2k cannot be improved. Several other related problems are also considered.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Graph Drawings and Representations</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computational Geometry: Theory and Applications

  • ISSN

    0925-7721

  • e-ISSN

  • Volume of the periodical

    48

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    16

  • Pages from-to

    295-310

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-84912574797