Constant-factor approximation of the domination number in sparse graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10159005" target="_blank" >RIV/00216208:11320/13:10159005 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.ejc.2012.12.004" target="_blank" >http://dx.doi.org/10.1016/j.ejc.2012.12.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2012.12.004" target="_blank" >10.1016/j.ejc.2012.12.004</a>
Alternative languages
Result language
angličtina
Original language name
Constant-factor approximation of the domination number in sparse graphs
Original language description
The k-domination number of a graph is the minimum size of a set D such that every vertex of G is at distance at most k from D. We give a linear-time constant-factor algorithm for approximation of the k-domination number in classes of graphs with boundedexpansion, which include e.g. proper minor-closed graph classes, proper classes closed on topological minors and classes of graphs that can be drawn on a fixed surface with bounded number of crossings on each edge. The algorithm is based on the followingapproximate min-max characterization. A subset A of vertices of a graph G is d-independent if the distance between each two vertices in A is greater than d. Note that the size of the largest 2k-independent set is a lower bound for the k-domination number. We show that every graph from a fixed class with bounded expansion contains a 2k-independent set A and a k-dominating set D such that vertical bar D vertical bar = 0(vertical bar A vertical bar), and these sets can be found in linear t
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
—
Volume of the periodical
34
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
8
Pages from-to
833-840
UT code for WoS article
000315936500004
EID of the result in the Scopus database
—