All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Additive Non-Approximability of Chromatic Number in Proper Minor-Closed Classes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10385422" target="_blank" >RIV/00216208:11320/18:10385422 - isvavai.cz</a>

  • Result on the web

    <a href="http://drops.dagstuhl.de/opus/volltexte/2018/9051" target="_blank" >http://drops.dagstuhl.de/opus/volltexte/2018/9051</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.47" target="_blank" >10.4230/LIPIcs.ICALP.2018.47</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Additive Non-Approximability of Chromatic Number in Proper Minor-Closed Classes

  • Original language description

    Robin Thomas asked whether for every proper minor-closed class G, there exists a polynomial-time algorithm approximating the chromatic number of graphs from G up to a constant additive error independent on the class G. We show this is not the case: unless P=NP, for every integer k &gt;= 1, there is no polynomial-time algorithm to color a K_{4k+1}-minor-free graph G using at most chi(G)+k-1 colors. More generally, for every k &gt;= 1 and 1 &lt;=beta &lt;=4/3, there is no polynomial-time algorithm to color a K_{4k+1}-minor-free graph G using less than beta chi(G)+(4-3 beta)k colors. As far as we know, this is the first non-trivial non-approximability result regarding the chromatic number in proper minor-closed classes. We also give somewhat weaker non-approximability bound for K_{4k+1}-minor-free graphs with no cliques of size 4. On the positive side, we present an additive approximation algorithm whose error depends on the apex number of the forbidden minor, and an algorithm with additive error 6 under the additional assumption that the graph has no 4-cycles.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA17-04611S" target="_blank" >GA17-04611S: Ramsey-like aspects of graph coloring</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    45th International Colloquium on Automata, Languages, and Programming (ICALP 2018

  • ISBN

    978-3-95977-076-7

  • ISSN

    1868-8969

  • e-ISSN

    neuvedeno

  • Number of pages

    12

  • Pages from-to

    1-12

  • Publisher name

    Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik

  • Place of publication

    Dagstuhl, Germany

  • Event location

    Prague, Czech Republi

  • Event date

    Jul 9, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article