All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Additive non-approximability of chromatic number in proper minor-closed classes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473769" target="_blank" >RIV/00216208:11320/23:10473769 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=recjS6~p92" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=recjS6~p92</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jctb.2020.09.003" target="_blank" >10.1016/j.jctb.2020.09.003</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Additive non-approximability of chromatic number in proper minor-closed classes

  • Original language description

    Robin Thomas asked whether for every proper minor-closed class G, there exists a polynomial-time algorithm approximat-ing the chromatic number of graphs from G up to a constant additive error independent on the class G. We show this is not the case: unless P = NP, for every integer k &gt; 1, there is no polynomial-time algorithm to color a K4k+1-minor-free graph G using at most chi(G) + k - 1 colors. More generally, for every k &gt; 1 and 1 &lt; beta &lt; 4/3, there is no polynomial -time algorithm to color a K4k+1-minor-free graph G using less than beta chi(G) + (4 - 3 beta)k colors. As far as we know, this is the first non-trivial non-approximability result regarding the chromatic number in proper minor-closed classes.Furthermore, we give somewhat weaker non-approximability bound for K4k+1-minor-free graphs with no cliques of size 4. On the positive side, we present additive approximation algorithm whose error depends on the apex number of the forbidden minor, and an algorithm with additive error 6 under the additional assumption that the graph has no 4-cycles.(c) 2020 Elsevier Inc. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA17-04611S" target="_blank" >GA17-04611S: Ramsey-like aspects of graph coloring</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Combinatorial Theory. Series B

  • ISSN

    0095-8956

  • e-ISSN

    1096-0902

  • Volume of the periodical

    158

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    19

  • Pages from-to

    74-92

  • UT code for WoS article

    000901805500004

  • EID of the result in the Scopus database

    2-s2.0-85091824420