Additive non-approximability of chromatic number in proper minor-closed classes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473769" target="_blank" >RIV/00216208:11320/23:10473769 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=recjS6~p92" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=recjS6~p92</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jctb.2020.09.003" target="_blank" >10.1016/j.jctb.2020.09.003</a>
Alternative languages
Result language
angličtina
Original language name
Additive non-approximability of chromatic number in proper minor-closed classes
Original language description
Robin Thomas asked whether for every proper minor-closed class G, there exists a polynomial-time algorithm approximat-ing the chromatic number of graphs from G up to a constant additive error independent on the class G. We show this is not the case: unless P = NP, for every integer k > 1, there is no polynomial-time algorithm to color a K4k+1-minor-free graph G using at most chi(G) + k - 1 colors. More generally, for every k > 1 and 1 < beta < 4/3, there is no polynomial -time algorithm to color a K4k+1-minor-free graph G using less than beta chi(G) + (4 - 3 beta)k colors. As far as we know, this is the first non-trivial non-approximability result regarding the chromatic number in proper minor-closed classes.Furthermore, we give somewhat weaker non-approximability bound for K4k+1-minor-free graphs with no cliques of size 4. On the positive side, we present additive approximation algorithm whose error depends on the apex number of the forbidden minor, and an algorithm with additive error 6 under the additional assumption that the graph has no 4-cycles.(c) 2020 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA17-04611S" target="_blank" >GA17-04611S: Ramsey-like aspects of graph coloring</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Theory. Series B
ISSN
0095-8956
e-ISSN
1096-0902
Volume of the periodical
158
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
19
Pages from-to
74-92
UT code for WoS article
000901805500004
EID of the result in the Scopus database
2-s2.0-85091824420