Coloring rings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438515" target="_blank" >RIV/00216208:11320/21:10438515 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Wu5kd6ZFHJ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Wu5kd6ZFHJ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/jgt.22635" target="_blank" >10.1002/jgt.22635</a>
Alternative languages
Result language
angličtina
Original language name
Coloring rings
Original language description
A ring is a graph whose vertex set can be partitioned into k >= 4 nonempty sets, X_1, ..., X_k with a special structure. In this paper, we prove that the chromatic number of a ring R is equal to the maximum chromatic number of a hyperhole in R. Using this result, we give a polynomial-time coloring algorithm for rings. Rings formed one of the basic classes in a decomposition theorem for a class of graphs studied by Boncompagni et al [J. Graph Theory 91 (2019), 192-246.]. Using our coloring algorithm for rings, we show that graphs in this larger class can also be colored in polynomial time. Furthermore, we find the optimal chi-bounding function for this larger class of graphs, and we also verify Hadwiger's conjecture for it.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA17-04611S" target="_blank" >GA17-04611S: Ramsey-like aspects of graph coloring</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Graph Theory
ISSN
0364-9024
e-ISSN
—
Volume of the periodical
96
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
42
Pages from-to
642-683
UT code for WoS article
000584666600001
EID of the result in the Scopus database
2-s2.0-85094162411