All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Classification of the spaces C_p*(X) within the Borel-Wadge hierarchy for a projective space X

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10285023" target="_blank" >RIV/00216208:11320/15:10285023 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985840:_____/15:00442124

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.topol.2014.12.021" target="_blank" >http://dx.doi.org/10.1016/j.topol.2014.12.021</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.topol.2014.12.021" target="_blank" >10.1016/j.topol.2014.12.021</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Classification of the spaces C_p*(X) within the Borel-Wadge hierarchy for a projective space X

  • Original language description

    We study the complexity of the space $C^*_p(X)$ of bounded continuous functions with the topology of pointwise convergence. We are allowed to use descriptive set theoretical methods, since for a separable metrizable space $X$, the measurable space of Borel sets in $C^*_p(X)$ (and also in the space $C_p(X)$ of all continuous functions) is known to be isomorphic to a subspace of a standard Borel space. It was proved by A. Andretta and A. Marcone % in [Pointwise convergence and the Wadge hierarchy. Comment. Math. Univ. Carolin., 42(1):159âEUR"172, 2001] that if $X$ is a $sigma$-compact metrizable space, then the measurable spaces $C_p(X)$ and $C^*_p(X)$ are standard Borel and if $X$ is a metrizable analytic space which is not $sigma$-compact then the spaces of continuous functions are Borel-$Pi^1_1$-complete. They also determined under the assumption of projective determinacy (textsf{PD}) the complexity of $C_p(X)$ for any projective space $X$ and asked whether a similar result holds

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GP14-06989P" target="_blank" >GP14-06989P: Quasiorder of curves with respect to open, monotone and confluent mappings</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Topology and its Applications

  • ISSN

    0166-8641

  • e-ISSN

  • Volume of the periodical

    183

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    7

  • Pages from-to

    11-17

  • UT code for WoS article

    000350518100002

  • EID of the result in the Scopus database

    2-s2.0-84921033302