All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

P2RANK: knowledge-based ligand binding site prediction using aggregated local features

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10294721" target="_blank" >RIV/00216208:11320/15:10294721 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007%2F978-3-319-21233-3_4" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-21233-3_4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-21233-3_4" target="_blank" >10.1007/978-3-319-21233-3_4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    P2RANK: knowledge-based ligand binding site prediction using aggregated local features

  • Original language description

    The knowledge of protein-ligand binding sites is vital prerequisite for any structure-based virtual screening campaign. If no prior knowledge about binding sites is available, the ligand-binding site prediction methods are the only way to obtain the necessary information. Here we introduce P2RANK, a novel machine learning-based method for prediction of ligand binding sites from protein structure. P2RANK uses Random Forests learner to infer ligandability of local chemical neighborhoods near the protein surface which are represented by specic near-surface points and described by aggregating physico-chemical features projected on those points from neighboring protein atoms. The points with high predicted ligandability are clustered and ranked to obtain the resulting list of binding site predictions. The new method was compared with a state-of-the-art binding site prediction method Fpocket on three representative datasets. The results show that P2RANK outperforms Fpocket by 10 to 20 percen

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GP14-29032P" target="_blank" >GP14-29032P: Efficient chemical space exploration using multi-objective optimization</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Algorithms for Computational Biology

  • ISBN

    978-3-319-21232-6

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    41-52

  • Publisher name

    Springer International Publishing

  • Place of publication

    Switzerland

  • Event location

    Mexico City, Mexico

  • Event date

    Aug 4, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article